Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liangzhong Xu,* Shuanghua Yang, Yongqi Qin, Yaxun Yang and Yongwei Huang

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's
Republic of China
Correspondence e-mail: qknhs@163169.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.062$
$w R$ factor $=0.151$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(1 H-Benzo-1,2,3-triazol-1-yl)-4,4-dimethyl-3-oxo- N-phenylpentanethioamide monohydrate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized in order to search for new benzotriazole compounds with high bioactivity. There are some intermolecular hydrogen-bond interactions in the crystal structure, providing stabilization.

Comment

The triazole motif appears frequently in the structures of various natural products and biologically active compounds, notably thiamine (vitamin B), penicillins, antibiotics such as micrococcin (James \& Watson, 1966), and many other metabolic products of fungi and primitive marine animals. Benzotriazole derivatives also exhibit better pharmacological activity than triazole compounds and have different biological activities (Zhang et al., 2002). In order to search for new benzotriazole compounds with higher bioactivity, we synthesized the title compound, (I), and describe its structure here.

The title compound crystallizes as a monohydrate. Bond lengths and angles in the benzotriazole system are in good agreement with those quoted in a previous report (Xu et al., 2005). The $\mathrm{C}=\mathrm{S}$ bond length is shorter than the typical $\mathrm{C}=\mathrm{S}$ bond length [1.68 Å; Allen et al., 1987]. The S1/N1/C1/C2 group is planar and nearly coplanar with the phenyl ring (dihedral angle: $4.4(1)^{\circ}$). The dihedral angles formed by the benzotriazole ring system with the phenyl ring is $82.6(2)^{\circ}$.

The most interesting structural feature of the title compound is the presence of intermolecular hydrogen-bond interactions (Table 2), which stabilize the structure.

Experimental

The title compound was prepared by reaction of 1-(1H-benzo[1,2,3]triazol-1-yl)-3,3-dimethylbutan-2-one ($4.34 \mathrm{~g}, 0.02 \mathrm{~mol}$),

Received 15 March 2005
Accepted 1 April 2005
Online 9 April 2005

Figure 1
View of the title compound, (I), with displacement ellipsoids drawn at the 40% probability level.
phenyl isothiocyanate ($2.24 \mathrm{~g}, 0.02 \mathrm{~mol}$) and potassium hydroxide $(2.24 \mathrm{~g}, 0.04 \mathrm{~mol})$ in dimethylsulfoxide at room temperature. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol-water $(v / v=3: 1)$ at room temperature.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=370.47 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.7572(14) \AA \\
& b=11.545(3) \AA \\
& c=14.778(4) \AA \\
& \alpha=78.575(4) \AA \\
& \beta=81.022()^{\circ} \\
& \gamma=81.362(4){ }^{\circ} \\
& V=943.7(4) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.304 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 1048 reflections
$\theta=2.3-22.3^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, yellow
$0.26 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.943, T_{\text {max }}=0.970$
5114 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.151$
$S=0.80$
3274 reflections
242 parameters

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

S1-C1	$1.632(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.295(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.331(4)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.198(4)$
$\mathrm{N} 1-\mathrm{C} 14$	$1.407(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 14$	$132.8(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$128.3(3)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{N} 2$	$108.2(3)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$121.6(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$111.7(3)$		

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{i}}$	0.85	2.10	$2.926(4)$	163
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 A \cdots \mathrm{~N}^{\text {ii }}$	0.85	2.02	$2.866(4)$	176
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.89(4)$	$1.93(4)$	$2.766(4)$	$155(3)$

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $1+x, y-1, z$; (iii) $x, 1+y, z$.
All H atoms were placed in calculated positions. H atoms bonded to C and O atoms were constrained to ride on their parent atom ($\mathrm{C}-$ $\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA)$, with $U_{\text {iso }}$ values of $1.2 U_{\text {eq }}(\mathrm{C})$ for the aryl and CH H atoms and $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for the CH_{3} and water H atoms. The position and isotropic displacement parameter of the NH H atom were refined freely. The crystals showed a weak diffracting ability, which could account for the rather high $R_{\text {int }}$ and low goodness-of-fit.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
James, M. N. G. \& Watson, K. J. (1966). J. Chem. Soc. pp. 1361-1367.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, L.-Z.,Yang, S.-H., Zhu, C.-Y., Li, K. \& Liu, F.-Q. (2005). Acta Cryst. E61, o259-o260.
Zhang, Y., Sun, X. W., Hui, X. E. \& Zhang, Q. (2002). Chin. J. Chem. 20, 168172.

